Archive for category analog

HOW TO BUILD A THERMOCOUPLE AMPLIFIER

A Thermocouple is a terrific way to measure temperature. The effects of temperature change on dissimilar metals produces a measurable voltage. But to make that measurement you need an amplifier circuit designed for the thermocouple being used.

Linear Technology LTC 1049 Low Power Zero-Drift Operational Amplifier with Internal Capacitors
Linear Technology LTC 1049 Low Power Zero-Drift Operational Amplifier
with Internal Capacitors

While researching “Zero Drift Amplifiers” as a follow-up to my video on Instrumentation Amplifiers I noticed the little schematic the front page of the LTC1049 datasheet which is shown here. I thought it was an ideal example of an analog application where some gain and some “gain helper” were needed to accomplish our useful little application of amplifying a thermocouple probe.

Read more at Hackaday.com

Thermocouple Temperature Response

Share

, , , ,

No Comments

DIRECT DIGITAL SYNTHESIS (DDS) EXPLAINED BY [BIL HERD]

One of the acronyms you may hear thrown around is DDS which stands for Direct Digital Synthesis. DDS can be as simple as taking a digital value — a collection of ones and zeroes — and processing it through a Digital to Analog Converter (DAC) circuit. For example, if the digital source is the output of a counter that counts up to a maximum value and resets then the output of the DAC would be a ramp (analog signal) that increases in voltage until it resets back to its starting voltage.

This concept can be very useful for creating signals for use in a project or as a poor-man’s version of a signal or function generator. With this in mind I set out here to demonstrate some basic waveforms using programmable logic for flexibility, and a small collection of resistors to act as a cheap DAC. In the end I will also demonstrate an off-the-shelf and inexpensive DDS chip that can be used with any of the popular micro-controller boards available that support SPI serial communication.

All of the topics covered in the video are also discussed further after the break.

 

Read more at Hackaday.com

Share

, , , ,

No Comments

BIL HERD: COMPUTING WITH ANALOG

When I was young the first “computer” I ever owned was an analog computer built from a kit. It had a sloped plastic case which had three knobs with large numerical scales around them and a small center-null meter. To operate it I would dial in two numbers as indicated by the scales and then adjust the “answer” by rotating the third dial until the little meter centered. Underneath there was a small handful of components wired on a terminal strip including two or three transistors.

Science Fair Analog Computer
Science Fair Analog Computer

In thinking back about that relic from the early 1970’s there was a moment when I assumed they may have been using the transistors as logarithmic amplifiers meaning that it was able to multiply electronically. After a few minutes of thought I came to the conclusion that it was probably much simpler and was most likely a Wheatstone Bridge. That doesn’t mean it couldn’t multiply, it was probably the printed scales that were logarithmic, much like a slide rule.

Analog slide rule on digital calculator
Old meets new: Analog and digital computation

Did someone just ask what a slide rule was? Let me explain further for anyone under 50. If you watch the video footage or movies about the Apollo Space Program you won’t see any anyone carrying a hand calculator, they didn’t exist yet. Yet the navigation guys in the first row of Mission Control known aptly as “the trench”, could quickly calculate a position or vector to within a couple of decimal places, and they did it using sliding piece of bamboo or aluminum with numbers printed on them.

 

Read more at Hackaday.com

Share

, , ,

No Comments

Tech Note on Op-Amps Driving Capacitance

A great tech note on OP Amps driving capacitance.  http://www.analog.com/library/analogDialogue/archives/31-2/appleng.html

Q. How does capacitive loading affect op amp performance?

A. To put it simply, it can turn your amplifier into an oscillator. Here’s how:

Op amps have an inherent output resistance, Ro, which, in conjunction with a capacitive load, forms an additional pole in the amplifier’s transfer function. As the Bode plot shows, at each pole the amplitude slope becomes more negative by 20 dB/ decade. Notice how each pole adds as much as -90° of phase shift. We can view instability from either of two perspectives. Looking at amplitude response on the log plot,circuit instability occurs when the sum of open-loop gain and feedback attenuation is greater than unity. Similarly, looking at phase response, an op amp will tend to oscillate at a frequency where loop phase shift exceeds -180°, if this frequency is below the closed-loop bandwidth. The closed-loop bandwidth of a voltage-feedback op amp circuit is equal to the op amp’s bandwidth product (GBP, or unity-gain frequency), divided by the circuit’s closed loop gain (ACL).

More at the original article at http://www.analog.com/library/analogDialogue/archives/31-2/appleng.html

Share

, , ,

No Comments